skip to main content


Search for: All records

Creators/Authors contains: "Davidson, Christopher D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) show great potential for engineering myocardium to study cardiac disease and create regenerative therapies. However, iPSC-CMs typically possess a late embryonic stage phenotype, with cells failing to exhibit markers of mature adult tissue. This is due in part to insufficient knowledge and control of microenvironmental cues required to facilitate the organization and maturation of iPSC-CMs. Here, we employed a cell-adhesive, mechanically tunable synthetic fibrous extracellular matrix (ECM) consisting of electrospun dextran vinyl sulfone (DVS) fibers and examined how biochemical, architectural, and mechanical properties of the ECM impact iPSC-CM tissue assembly and subsequent function. Exploring a multidimensional parameter space spanning cell-adhesive ligand, seeding density, fiber alignment, and stiffness, we found that fibronectin-functionalized DVS matrices composed of highly aligned fibers with low stiffness optimally promoted the organization of functional iPSC-CM tissues. Tissues generated on these matrices demonstrated improved calcium handling and increased end-to-end localization of N-cadherin as compared to micropatterned fibronectin lines or fibronectin-coated glass. Furthermore, DVS matrices supported long-term culture (45 days) of iPSC-CMs; N-cadherin end-to-end localization and connexin43 expression both increased as a function of time in culture. In sum, these findings demonstrate the importance of recapitulating the fibrous myocardial ECM in engineering structurally organized and functional iPSC-CM tissues. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Vasculogenesis is thede novoformation of a vascular network from individual endothelial progenitor cells occurring during embryonic development, organogenesis, and adult neovascularization. Vasculogenesis can be mimicked and studiedin vitrousing network formation assays, in which endothelial cells (ECs) spontaneously form capillary-like structures when seeded in the appropriate microenvironment. While the biochemical regulators of network formation have been well studied using these assays, the role of mechanical and topographical properties of the extracellular matrix (ECM) is less understood. Here, we utilized both natural and synthetic fibrous materials to better understand how physical attributes of the ECM influence the assembly of EC networks. Our results reveal that active cell-mediated matrix recruitment through actomyosin force generation occurs concurrently with network formation on Matrigel, a reconstituted basement membrane matrix regularly used to promote EC networks, and on synthetic matrices composed of electrospun dextran methacrylate (DexMA) fibers. Furthermore, modulating physical attributes of DexMA matrices that impair matrix recruitment consequently inhibited the formation of cellular networks. These results suggest an iterative process in which dynamic cell-induced changes to the physical microenvironment reciprocally modulate cell behavior to guide the formation and stabilization of multicellular networks.

     
    more » « less